I. CONstrained Test Problems

This section provides the detailed descriptions of the constrained test problems used in our empirical studies. In particular, we mainly describe the mathematical formulations and characteristics of the constraints while the baseline test problems are from the classic DTLZ benchmark suite \([1]\). We start from C-DTLZ problems proposed in \([2]\), followed by DC-DTLZ problems developed by us.

A. C-DTLZ Benchmark Suite

1) Type-1 Constrained Problems: Here the original Pareto front (PF) is kept the same, but there is an infeasible barrier that causes difficulties for an algorithm in converging toward the PF. C1-DTLZ1 is defined as:

\[
\begin{align*}
\min f_1(x) &= \frac{1}{2}x_1x_2 \cdots x_{m-1}(1 + g(x_m)), \\
\min f_2(x) &= \frac{1}{2}x_1x_2 \cdots (1 - x_{m-1})(1 + g(x_m)), \\
\vdots \\
\min f_{m-1}(x) &= \frac{1}{2}x_1(1 - x_2)(1 + g(x_m)), \\
\min f_m(x) &= \frac{1}{2}(1 - x_1)(1 + g(x_m))
\end{align*}
\]

where

\[
g(x_m) = 100\left(\left|x_m\right| + \sum_{i \in \mathbb{N}} (x_i - 0.5)^2 - \cos(20\pi(x_i - 0.5))\right),
\]

and \(x_m = (x_m, \ldots, x_n)^T\). In particular, the constraint is defined as:

\[
c(x) = 1 - \frac{f_m(x)}{0.6} - \sum_{i=1}^{m-1} m - 1 \frac{f_i(x)}{0.5} \geq 0.
\]

An illustrative example of the feasible region and PF in the 2-objective case is shown in Fig. 1.

C1-DTLZ3 is defined as:

\[
\begin{align*}
\min f_1(x) &= (1 + g(x_m))\cos(x_1\pi/2) \cdots \cos(x_{m-2}\pi/2), \\
\min f_2(x) &= (1 + g(x_m))\cos(x_1\pi/2) \cdots \cos(x_{m-2}\pi/2) \\
\min f_3(x) &= (1 + g(x_m))\cos(x_1\pi/2) \cdots \sin(x_{m-2}\pi/2), \\
\vdots \\
\min f_m(x) &= (1 + g(x_m))\sin(x_1\pi/2),
\end{align*}
\]

where the \(g(x_m)\) is the same as equation (2), while the constraint is defined as:

\[
c(x) = \left(\sum_{i=1}^{m} f_i(x)^2 - 16\right) \left(\sum_{i=1}^{m} f_i(x)^2 - r^2\right) \geq 0.
\]

In particular, we set \(r = \{9, 12.5, 15.15\}\) for \(m \in \{3, 5, 8, 10, 15\}\) as recommended in \([2]\). An illustrative example of the feasible region and PF in the 2-objective case is shown in Fig. 2.

2) Type-2 Constrained Problem: This constraint is designed to introduce infeasibility to some parts of the PF. The objective functions of C2-DTLZ2 are the same as equation (4). The \(g(x_m)\) is defined as:

\[
g(x_m) = \sum_{x_i \in x_m} (x_i - 0.5)^2,
\]

where the constraint is defined as:

\[
c(x) = \left(\sum_{i=1}^{m} f_i(x)^2 - 16\right) \left(\sum_{i=1}^{m} f_i(x)^2 - r^2\right) \geq 0.
\]

An illustrative example of the feasible region and PF in the 2-objective case is shown in Fig. 2.
and the constraint is defined as:

\[
c(x) = \max \left\{ \max_{i=1}^{m} \left[(f_i(x) - 1)^2 + \sum_{j=1, j \neq i}^{m} f_j^2 \right], \right. \\
\left. \left[\sum_{i=1}^{m} (f_i(x) - \frac{1}{\sqrt{m}})^2 - r^2 \right] \right\},
\]

To make this test problem more challenging, we set \(r = 0.1 \) in our empirical studies. An illustrative example of the feasible region and PF in the 2-objective case is shown in Fig. 3.

3) Type-3 Constrained Problems: These problems involve multiple constraints and the PF is formed by portions of the added constraint surfaces. C3-DTLZ1 has the same objective functions as C1-DTLZ1, but the constraint is defined as:

\[
c_j(x) = \sum_{i=1, i \neq j}^{m} f_j(x) + \frac{f_i(x)}{0.5} - 1 \geq 0, \forall j = 1, \cdots, m.
\]

An illustrative example of the feasible region and PF in the 2-objective case is shown in Fig. 4.

C3-DTLZ4 is defined as:

\[
\begin{align*}
\min f_1(x) &= (1 + g(x_m)) \cos(x_1^a \pi/2) \cdots \cos(x_{m-2}^a \pi/2), \\
\min f_2(x) &= (1 + g(x_m)) \cos(x_1^a \pi/2) \cdots \sin(x_{m-2}^a \pi/2), \\
\min f_3(x) &= (1 + g(x_m)) \cos(x_1^a \pi/2) \cdots \sin(x_{m-2}^a \pi/2), \\
&\vdots \\
\min f_m(x) &= (1 + g(x_m)) \sin(x_1^a \pi/2),
\end{align*}
\]

where

\[
g(x_m) = \sum_{x_i \in x_m} (x_i - 0.5)^2.
\]

In particular, the constraints are defined as:

\[
c_j(x) = \frac{f_j^2}{4} + \sum_{i=1, i \neq j}^{m} f_i(x)^2 - 1 \geq 0, \forall j = 1, \cdots, m.
\]

An illustrative example of the feasible region and PF in the 2-objective case is shown in Fig. 5.

B. DC-DTLZ Benchmark Suite

Different from C-DTLZ benchmark suite, in which the constraints act on the objective space, DC-DTLZ benchmark suite, developed in this paper, have constraints act on the decision space. Similar to Section I-A we develop three different types of constraints as follows.

1) Type-1 Constrained Problems: Similar to the Type-2 constrained problem of the C-DTLZ benchmark suite, the constrained problems introduced here also aim to introduce several infeasible segments on the PF. Specifically, DC1-DTLZ1 and DC1-DTLZ3 have the same objective functions as C1-DTLZ1 and C1-DTLZ3, but their corresponding constraints are defined as:

\[
c(x) = \cos(a \pi \cdot x_1) > b,
\]

In particular, \(a > 0 \) controls the number of feasible segments on the PF. Note that each feasible segment is a cone starting from the origin, as shown in Fig. 6 and Fig. 7. \(0 < b < 1 \) controls the size of each feasible segment, where a large \(b \) leads to a narrow feasible segment. In our empirical studies, we set \(a = 3 \) and \(b = 0.5 \).
2) Type-2 Constrained Problem: Similar to the Type-1 constrained problem of the C-DTLZ benchmark suite, the constrained problems introduced here have the same PF as the baseline test problems. But the constraints make most of the attainable objective space become infeasible as shown in Fig. 8 and Fig. 9. Specifically, DC2-DTLZ1 and DC2-DTLZ3 have the same objective functions as C1-DTLZ1 and C1-DTLZ3, while there are two constraints defined as:

\[c_1(x) = \cos(axg(x_m)) > b, \quad c_2(x) = e^{-g(x_m)} > b. \]

It is worth noting that the constraint violation (CV) of a solution \(x \) fluctuates with the decrease of \(g(x_m) \), as shown in Fig. 10. In other words, \(CV(x) \) does not monotonically decreases when it converges toward the PF, while there exists several local optima of CV which can obstruct the convergence of \(x \). In particular, \(a > 0 \) controls the number of local optima of CV, while \(0.5 < b < 1 \) controls the value of the corresponding local optimum.

3) Type-3 Constrained Problem: This type of constrained problem is a combination of Type-1 and Type-2 constraints. The objective functions of DC3-DTLZ1 and DC3-DTLZ3 are the same as before, while the \(m + 1 \) constraints are defined as:

\[c_j(x) = \cos(a\pi g(x_j)) > b, \forall j = 1, \cdots, m, \quad c_{m+1}(x) = \cos(a\pi g(x_m)) > b. \]

As shown in Fig. 11, similar to DC1-DTLZ1, the PF of DC3-DTLZ1 is partially feasible. In particular, the shape of the infeasible region is similar to that of DC1-DTLZ1 but is cut into several feasible segments. In addition, similar to DC2-DTLZ1, there exists several local optima of CV which are away from the PF. In particular, \(a > 0 \) controls the gap between different feasible segment along the same cone while \(0.5 < b < 1.0 \) controls the size of each feasible segment. Fig. 12 shows the feasible region and the PF of DC3-DTLZ3. Its property is similar to that of DC3-DTLZ1.

C. Comparison of Feasible Ratio

In Table I and Table II, we presented the feasible ratios of different test problems. In particular, the feasible ratio is an estimated size of the feasible region with respect to the whole search space. To estimate this quantity, for a test
It is a modification of NSGA-III \cite{4}.

It uses an adaptive penalty function and a

It is our recently developed algorithm

It is a decomposition-based evolutionary

\[2\]: It is a modification of the MOEA/D-DE developed in \cite{3}, where the feasibility information is incorporated in the update procedure: 1) if the offspring is feasible while the parent is infeasible, the offspring will replace this parent; otherwise, the parent survives; 2) if both offspring and parent are infeasible, the one having the smaller CV survives; 3) if both of them are feasible, we compare the aggregation function value as usual.

\[7\]: It uses an adaptive penalty function and a
distance measure to handle constraints. In particular, these two functions are developed upon the objective function values. To improve the population diversity, an infeasible solution can survive to the next generation in case it is in an isolated subregion.

\[6\]: It is a decomposition-based evolutionary algorithm where the balance between convergence and diversity is maintained by two independent distance measures and a simple preemptive distance comparison scheme for solution association. In addition, I-DBEA uses an adaptive epsilon formulation to deal with constraints.

\[5\]: It is our recently developed algorithm that incorporates the Pareto dominance and decomposition into a single paradigm. Similar to NSGA-II, we first divide the population into several non-domination levels, and solutions in the first several levels have a higher priority to survive to the next generation. Afterwards, the exceeded solutions are trimmed according to the density information of their associated subregion and their aggregation function values. To improve the population diversity, an infeasible solution can survive to the next generation in case it is in an isolated subregion.

\[4\]: where the Pareto dominance relation is replaced with the constrained dominance relation.

\[5\]: It is our recently developed algorithm that incorporates the Pareto dominance and decomposition into a single paradigm. Similar to NSGA-II, we first divide the population into several non-domination levels, and solutions in the first several levels have a higher priority to survive to the next generation. Afterwards, the exceeded solutions are trimmed according to the density information of their associated subregion and their aggregation function values. To improve the population diversity, an infeasible solution can survive to the next generation in case it is in an isolated subregion.

In our empirical studies, we choose five state-of-the-art constrained evolutionary multi-objective optimization (EMO) algorithms for peer comparisons. We briefly describe their basic ideas as follows:

- C-MOEA/D \cite{2}: It is a modification of the MOEA/D-DE developed in \cite{3}, where the feasibility information is
division information of their associated subregion and their aggregation function values. To improve the population diversity, an infeasible solution can survive to the next generation in case it is in an isolated subregion.

- C-MOEA/DD \cite{5}: It is our recently developed algorithm that incorporates the Pareto dominance and decomposition into a single paradigm. Similar to NSGA-II, we first divide the population into several non-domination levels, and solutions in the first several levels have a higher priority to survive to the next generation. Afterwards, the exceeded solutions are trimmed according to the density information of their associated subregion and their aggregation function values. To improve the population diversity, an infeasible solution can survive to the next generation in case it is in an isolated subregion.

- C-MOEA/DD \cite{5}: It is our recently developed algorithm that incorporates the Pareto dominance and decomposition into a single paradigm. Similar to NSGA-II, we first divide the population into several non-domination levels, and solutions in the first several levels have a higher priority to survive to the next generation. Afterwards, the exceeded solutions are trimmed according to the density information of their associated subregion and their aggregation function values. To improve the population diversity, an infeasible solution can survive to the next generation in case it is in an isolated subregion.

TABLE I: Feasible ratios of C-DTLZ benchmark problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-DTLZ1</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>C1-DTLZ3</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>C2-DTLZ2</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>C3-DTLZ1</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>C3-DTLZ4</td>
<td>1.84%</td>
<td>3.16%</td>
<td>5.09%</td>
<td>6.38%</td>
<td>9.48%</td>
</tr>
</tbody>
</table>

II. ALGORITHMS FOR COMPARISONS

In our empirical studies, we choose five state-of-the-art constrained evolutionary multi-objective optimization (EMO) algorithms for peer comparisons. We briefly describe their basic ideas as follows:

- C-MOEA/D \cite{2}: It is a modification of the MOEA/D-DE developed in \cite{3}, where the feasibility information is
division information of their associated subregion and their aggregation function values. To improve the population diversity, an infeasible solution can survive to the next generation in case it is in an isolated subregion.

- C-MOEA/DD \cite{5}: It is our recently developed algorithm that incorporates the Pareto dominance and decomposition into a single paradigm. Similar to NSGA-II, we first divide the population into several non-domination levels, and solutions in the first several levels have a higher priority to survive to the next generation. Afterwards, the exceeded solutions are trimmed according to the density information of their associated subregion and their aggregation function values. To improve the population diversity, an infeasible solution can survive to the next generation in case it is in an isolated subregion.

All algorithms use the simulated binary crossover \cite{8} and the polynomial mutation \cite{9} for offspring generation. The corresponding parameters are set in Table III.

TABLE III: Parameter settings for reproduction operators

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossover probability (p_c)</td>
<td>0.9</td>
</tr>
<tr>
<td>Mutation probability (p_m)</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Crossover index (\mu_c)</td>
<td>30</td>
</tr>
<tr>
<td>Mutation index (\mu_m)</td>
<td>20</td>
</tr>
</tbody>
</table>

The population size is set as shown in Table IV. The termination criteria is the number of function evaluations (FEs)
which is presented in Table IV. Note that CMOEA shares the same settings as C-NSGA-III; while the other algorithms share the same settings with C-TAEA. In particular, the setting of weight vectors is based on the method developed in [5].

TABLE IV: Number of weight vectors and the population size

<table>
<thead>
<tr>
<th>m</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-NSGA-III</td>
<td>91</td>
<td>91</td>
<td>210</td>
<td>210</td>
<td>156</td>
<td>156</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>C-TAEA</td>
<td>91</td>
<td>91</td>
<td>210</td>
<td>210</td>
<td>156</td>
<td>156</td>
<td>275</td>
<td>275</td>
</tr>
</tbody>
</table>

TABLE V: Number of FEs of different test instances.

<table>
<thead>
<tr>
<th>Problem</th>
<th>m = 3</th>
<th>m = 6</th>
<th>m = 8</th>
<th>m = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-DTLZ1</td>
<td>500 × N</td>
<td>1,000 × N</td>
<td>1,000 × N</td>
<td>1,500 × N</td>
</tr>
<tr>
<td>C1-DTLZ2</td>
<td>1,000 × N</td>
<td>1,000 × N</td>
<td>1,000 × N</td>
<td>1,500 × N</td>
</tr>
<tr>
<td>C2-DTLZ1</td>
<td>250 × N</td>
<td>350 × N</td>
<td>500 × N</td>
<td>750 × N</td>
</tr>
<tr>
<td>C3-DTLZ1</td>
<td>750 × N</td>
<td>1,250 × N</td>
<td>2,000 × N</td>
<td>4,000 × N</td>
</tr>
</tbody>
</table>

N is the population size used for C-NSGA-III as shown in Table IV.

III. COMPARISON RESULTS ON HV METRIC FOR C-DTLZ AND DC-DTLZ PROBLEMS

This section provides the comparison results of the HV values obtained by C-TAEA and the other five peer algorithms on C-DTLZ and DC-DTLZ problems. Please find the detailed information from Table VII and Table VIII.

IV. COMPARISONS WITH TWO VARIANTS

This section provides the comparison results of the IGD and HV values obtained by C-TAEA and its two variants introduced in Section V-C of the paper. Please find the detailed information from Table VIII and Table IX.

V. PROBLEM FORMULATION OF THE WATER DISTRIBUTION NETWORK OPTIMIZATION

This section briefly describes the problem formulation of the water distribution network (WDN) design, including the objective and constraint functions, used in our case study. In particular, there are four objective functions and two constraint functions in total.

1) **Cost**: One of the most important objective functions of the WDN design is the cost. There are many different cost metrics available in the literature. This paper considers the following form:

\[f_{\text{cost}} = C_c + C_o, \]

where \(C_c \) is the capital cost which accounts for the costs of network components such as pipes, storage tanks; while \(C_o \) is the operating cost which measure the energy costs for pump operation. More detailed information and configurations of the costs of pipes, storage tanks and pump operation used in the WDN model, i.e., Anytown model, can be found in [10].

2) **Resilience index**: The concept of resilience index was introduced by Todini [11] to account for the reliability and availability under certain stressed conditions. Specifically, it is calculated as:

\[f_r = \frac{\sum_{j=1}^{N_n} Q_j(H_j - H_j^{\text{min}})}{(\sum_{j=1}^{N_n} Q_j H_j + \sum_{j=1}^{N_n} P_j / \gamma) - \sum_{j=1}^{N_n} Q_j H_j}, \]

where \(Q_j \) and \(H_j \) are respectively the demand and head at \(j \)-th node, \(N_n \) is the number of nodes, \(H_j^{\text{min}} \) is the required head at the \(j \)-th node, \(\gamma \) is the specific weight of water, and \(Q_j \) and \(H_j \) are respectively the demand and head of the \(k \)-th reservoir. \(N_r \) is the number of reservoirs. \(P_j \) is the power introduced into the network by the \(i \)-th pump and \(N_p \) is the number of pumps.

3) **Statistical flow entropy**: This objective function was proposed in [12], and it is formulated as:

\[f_e = S_0 + \sum_{i=1}^{N_n} F_i S_i, \]

where \(F_i \) is the fraction of the total flow that a network supplies to the \(i \)-th node; \(S_0 \) is entropy of sources or external supplies; \(S_i \) is the entropy of the \(i \)-th node. Specifically, they are calculated as:

\[S_0 = -\sum_{i \in I} F_{0,i} \ln(F_{0,i}) - \sum_{i=1}^{N_n} \sum_{j \in N_i} F_{i,j} \ln(F_{i,j}), \]

where \(F_{0,i} \) is the inflow at the \(i \)-th source node, \(Q \) is the total demand for all nodes, and the set \(I \) includes all the source nodes. \(Q_i \) is the demand at the \(i \)-th node, while \(T_i \) is the total flow that reaches the \(i \)-th node. \(N_i \) is the set of nodes with pipes flow from the \(i \)-th node; \(F_{i,j} \) is the volume flow rate in the pipe between the \(i \)-th and \(j \)-th nodes.

4) **Water age**: Water quality problems in a WDN often arise from interactions between water within the pipe and the pipe wall in addition to within the bulk water of storage tanks. There is a great chance for contamination and thus harm the health if the water stays in the system for a long period of time. In this case, we can see that the time required for the water to reach the customer from water sources through the network influences the water quality. As discussed in [13], water age at a demand node is used as an indicator of water quality and is defined as the average travel time from water sources to the demand nodes. Specifically, it is calculated as:

\[f_{\text{age}} = \max_{i,t} (WA_{i,t}) \]

where \(WA_{i,t} \) indicates the water age of the \(i \)-th node at time step \(t \) and it can be calculated by EPANET [14].

5) **Constraints**: The first constraint considered in this paper is the satisfaction of the minimum specified pressure supplied to each node. It is formulated as:

\[H_i \geq H_i^{\text{min}}, \quad i = 1, \ldots, N_n \]

where \(H_i \) is the pressure at the \(i \)-th node; while \(H_i^{\text{min}} \) is its corresponding minimum required pressure; \(N_n \) is the number of demand nodes.

Moreover, the height of water in a storage tank is required to be recovered over a normal operating cycle. In other words,
TABLE VI: Comparison results on HV metric (median and IQR) for C-TAEA and the other peer algorithms on C-DTLZ benchmark suite

<table>
<thead>
<tr>
<th>m</th>
<th>C-TAEA</th>
<th>C-NSGA-III</th>
<th>C-MOEA/D</th>
<th>C-MOEA/DD</th>
<th>I-DBEA</th>
<th>CMOEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1.3024(1.01E-3)</td>
<td>3.0920(1.39E-2)</td>
<td>3.2043(3.42E-2)</td>
<td>3.7043(1.07E-2)</td>
<td>3.9837(1.42E-2)</td>
<td>3.9837(1.06E-2)</td>
</tr>
<tr>
<td>15</td>
<td>0.4102(3.83E-2)</td>
<td>4.0162(9.86E-2)</td>
<td>4.0072(7.77E-2)</td>
<td>4.0277(1.37E-2)</td>
<td>4.0911(1.73E-2)</td>
<td>4.0288(3.35E-2)</td>
</tr>
</tbody>
</table>

TABLE VII: Comparison results on HV metric (median and IQR) for C-TAEA and the other peer algorithms on DC-DTLZ benchmark suite

<table>
<thead>
<tr>
<th>m</th>
<th>C-TAEA</th>
<th>C-NSGA-III</th>
<th>C-MOEA/D</th>
<th>C-MOEA/DD</th>
<th>I-DBEA</th>
<th>CMOEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.2066(1.70E-2)</td>
<td>1.1982(0.96E-2)</td>
<td>0.9631(1.28E-2)</td>
<td>1.1845(0.30E-2)</td>
<td>1.1839(2.93E-2)</td>
<td>1.1838(4.08E-3)</td>
</tr>
<tr>
<td>5</td>
<td>1.4783(2.57E-2)</td>
<td>1.4725(3.06E-2)</td>
<td>1.4785(3.05E-2)</td>
<td>1.4762(8.46E-2)</td>
<td>1.4782(7.99E-2)</td>
<td>1.4799(1.32E-2)</td>
</tr>
<tr>
<td>8</td>
<td>1.9682(1.24E-2)</td>
<td>1.9347(8.57E-2)</td>
<td>1.9660(8.95E-2)</td>
<td>1.9655(5.82E-2)</td>
<td>1.9768(5.43E-2)</td>
<td>1.9678(1.41E-2)</td>
</tr>
<tr>
<td>10</td>
<td>2.3890(3.67E-2)</td>
<td>2.3113(4.34E-2)</td>
<td>2.3792(1.36E-2)</td>
<td>2.3801(4.00E-3)</td>
<td>2.3797(5.70E-2)</td>
<td>2.3810(8.70E-3)</td>
</tr>
<tr>
<td>15</td>
<td>4.1012(1.73E-2)</td>
<td>4.0031(2.76E-2)</td>
<td>4.0122(1.78E-2)</td>
<td>4.0823(8.88E-2)</td>
<td>4.0911(3.84E-2)</td>
<td>4.0532(0.30E-2)</td>
</tr>
</tbody>
</table>

† denotes the performance of C-TAEA is significantly better than the other peers according to the Wilcoxon's rank sum test at a 0.05 significance level; ‡ denotes the corresponding algorithm significantly outperforms C-TAEA.
TABLE VIII: Comparison results on IGD and HV metrics (median and IQR) for C-TAEA and the two variants on DC-DTLZ Benchmark Suite

<table>
<thead>
<tr>
<th>m</th>
<th>C-TAEA</th>
<th>Variant-I</th>
<th>Variant-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.096E+2(1.72-4E-3)</td>
<td>2.096E+2(1.72-4E-3)</td>
<td>1.309E+2(1.01E-3)</td>
</tr>
<tr>
<td>5</td>
<td>5.217E+2(1.4-1E-4)</td>
<td>5.217E+2(1.4-1E-4)</td>
<td>1.579E+2(7.8E-4)</td>
</tr>
<tr>
<td>8</td>
<td>9.912E+2(3.4E-4)</td>
<td>9.912E+2(3.4E-4)</td>
<td>2.1411(7.6E-2)</td>
</tr>
<tr>
<td>10</td>
<td>1.016E+3(8.2E-3)</td>
<td>1.016E+3(8.2E-3)</td>
<td>2.593(3.2E-2)</td>
</tr>
<tr>
<td>15</td>
<td>2.233E+2(1.0E-2)</td>
<td>2.234E+2(1.0E-2)</td>
<td>4.1022(3.8E-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m</th>
<th>C-TAEA</th>
<th>Variant-I</th>
<th>Variant-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5.661E+2(9.4E-4)</td>
<td>5.661E+2(9.4E-4)</td>
<td>0.7351(4.0E-2)</td>
</tr>
<tr>
<td>5</td>
<td>1.310E+3(2.8E-4)</td>
<td>1.310E+3(2.8E-4)</td>
<td>1.1246(5.7E-3)</td>
</tr>
<tr>
<td>8</td>
<td>2.600E+3(5.0E-4)</td>
<td>2.600E+3(5.0E-4)</td>
<td>1.5937(7.0E-3)</td>
</tr>
<tr>
<td>10</td>
<td>5.672E+3(4.7E-3)</td>
<td>5.672E+3(4.7E-3)</td>
<td>2.4033(6.9E-3)</td>
</tr>
<tr>
<td>15</td>
<td>8.749E+3(1.6E-2)</td>
<td>8.749E+3(1.6E-2)</td>
<td>2.1825(3.8E-2)</td>
</tr>
</tbody>
</table>

Note: † denotes the performance of C-TAEA is significantly better than the other peers according to the Wilcoxon’s rank sum test at a 0.05 significance level; ‡ denotes the corresponding algorithm significantly outperforms C-TAEA.

TABLE IX: Comparison results on IGD and HV metrics (median and IQR) for C-TAEA and the two variants on C-DTLZ Benchmark Suite

<table>
<thead>
<tr>
<th>m</th>
<th>C-TAEA</th>
<th>Variant-I</th>
<th>Variant-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.594E+2(9.5E-3)</td>
<td>1.594E+2(9.5E-3)</td>
<td>0.4131(8.1E-4)</td>
</tr>
<tr>
<td>5</td>
<td>3.386E+2(1.4E-4)</td>
<td>3.386E+2(1.4E-4)</td>
<td>0.8607(7.5E-1)</td>
</tr>
<tr>
<td>8</td>
<td>1.072E+3(6.6E-5)</td>
<td>1.072E+3(6.6E-5)</td>
<td>5.7813(1.5E-4)</td>
</tr>
<tr>
<td>10</td>
<td>1.993E+3(3.4E-4)</td>
<td>1.993E+3(3.4E-4)</td>
<td>2.1386(6.6E-4)</td>
</tr>
<tr>
<td>15</td>
<td>3.461E+3(6.6E-4)</td>
<td>3.461E+3(6.6E-4)</td>
<td>4.1424(3.6E-1)</td>
</tr>
</tbody>
</table>

Note: † denotes the median metric value is not available, while — denotes the IQR is not available.

† denotes the performance of C-TAEA is significantly better than the other peers according to the Wilcoxon’s rank sum test at a 0.05 significance level; ‡ denotes the corresponding algorithm significantly outperforms C-TAEA. \ denotes the median metric value is not available, while — denotes the IQR is not available.
the volume of water in a storage tank at the end of a day must be no less than the volume at the beginning of a day. Specifically, the second constraint function is defined as:

\[V_{k,E} \geq V_{k,S}, \quad k = 1, \ldots, N_t \]

(23)

where \(V_{k,S} \) represents the volume of the water at the beginning of a day for the \(k \)-th tank while \(V_{k,E} \) represents the corresponding volume at the end of a day. \(N_t \) is the number of storage tanks in a WDN.

Note that all the above mentioned objective and constraint functions are calculated by EPANET [14]. It is a software developed by the United States Environmental Protection Agency, and is used to model the hydraulic and water quality behavior of water distribution piping systems. In particular, EPANET is able to simulate: 1) the flow of water in each pipe; 2) the pressure at each node; 3) the height of the water in each tank; and 4) water age.

VI. Plots of Populations

In this section, we show the parallel coordinate plots (PCPs) of the populations obtained by C-TAEA and the peer algorithms on different test instances from 5-objective to 15-objective cases. Here the population used in our plots is the one having the median IGD value. In particular, we only plot the non-dominated solutions.
Fig. 13: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective C1-DTLZ1 (median IGD value).

Fig. 14: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective C1-DTLZ1 (median IGD value).

Fig. 15: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective C1-DTLZ1 (median IGD value).

Fig. 16: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective C1-DTLZ1 (median IGD value).

Fig. 17: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective C1-DTLZ3 (median IGD value).

Fig. 18: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective C1-DTLZ3 (median IGD value).
Fig. 19: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective C1-DTLZ3 (median IGD value).

Fig. 20: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective C1-DTLZ3 (median IGD value).

Fig. 21: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective C2-DTLZ2 (median IGD value).

Fig. 22: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective C2-DTLZ2 (median IGD value).

Fig. 23: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective C2-DTLZ2 (median IGD value).

Fig. 24: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective C2-DTLZ2 (median IGD value).
Fig. 25: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective C3-DTLZ1 (median IGD value).

Fig. 26: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective C3-DTLZ1 (median IGD value).

Fig. 27: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective C3-DTLZ1 (median IGD value).

Fig. 28: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective C3-DTLZ1 (median IGD value).

Fig. 29: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective C3-DTLZ4 (median IGD value).

Fig. 30: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective C3-DTLZ4 (median IGD value).
Fig. 31: PCPs of the population obtained by C-TAEA and the peer algorithms on 10-objective C3-DTLZ4 (median IGD value).

Fig. 32: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective C3-DTLZ4 (median IGD value).

Fig. 33: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective DC1-DTLZ1.

Fig. 34: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective DC1-DTLZ1.

Fig. 35: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective DC1-DTLZ1.

Fig. 36: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective DC1-DTLZ1.
Fig. 37: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective DC1-DTLZ3.

Fig. 38: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective DC1-DTLZ3.

Fig. 39: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective DC1-DTLZ3.

Fig. 40: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective DC1-DTLZ3.

Fig. 41: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective DC2-DTLZ1.

Fig. 42: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective DC2-DTLZ1.
Fig. 43: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective DC2-DTLZ1.

Fig. 44: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective DC2-DTLZ1.

Fig. 45: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective DC2-DTLZ3.

Fig. 46: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective DC2-DTLZ3.

Fig. 47: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective DC2-DTLZ3.

Fig. 48: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective DC2-DTLZ3.
ACKNOWLEDGMENT

This work was supported by the Ministry of Science and Technology of China (Grant No. 2017YFC0804002), the Science and Technology Innovation Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284) and EPSRC (Grant No. EP/J017515/1).

REFERENCES

[14] https://www.epa.gov/water-research/epanet#downloads
Fig. 49: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective DC3-DTLZ1.

Fig. 50: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective DC3-DTLZ1.

Fig. 51: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective DC3-DTLZ1.

Fig. 52: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective DC3-DTLZ1.

Fig. 53: PCPs of the populations obtained by C-TAEA and the peer algorithms on 5-objective DC3-DTLZ3.

Fig. 54: PCPs of the populations obtained by C-TAEA and the peer algorithms on 8-objective DC3-DTLZ3.
Fig. 55: PCPs of the populations obtained by C-TAEA and the peer algorithms on 10-objective DC3-DTLZ3.

Fig. 56: PCPs of the populations obtained by C-TAEA and the peer algorithms on 15-objective DC3-DTLZ3.